Calculus for Directional Limiting Normal Cones and Subdifferentials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating Tangent and Normal Cones Without Calculus

1. The tangent cone. We can estimate the directional derivative and gradient of a smooth function quickly and easily using finite difference formulas. While rather inaccurate, such estimates have some appeal, needing neither calculus rules nor even a closed-form expression for the function. In the variational geometry of sets, the role of derivatives and gradients are played by the cones of “ta...

متن کامل

Limiting Frechet Subdifferentials of Marginal Functions

This paper investigates calculus rules for the limiting Fréchet-subdifferential of infimum value functions of locally Lipschitzian and non-Lipschitzian functions. It is not required that the infimum is attained.

متن کامل

On Characterizations of Directional Derivatives and Subdifferentials of Fuzzy Functions

In this paper, based on a partial order, we study the characterizations of directional derivatives and the subdifferential of fuzzy function. At the same time, we also discuss the relation between the directional derivative and the subdifferential.

متن کامل

Limiting subdifferentials of perturbed distance functions in Banach spaces

We explore in arbitrary Banach spaces the Fréchet type ε-subdifferentials and the limiting subdifferentials for the perturbed distance function dS(·) determined by a closed subset S and a lower semicontinuous function J defined on S. In particular, upper and lower estimates for the Fréchet type ε-subdifferentials and for the limiting subdifferentials are provided in terms of the corresponding s...

متن کامل

On Weak Subdifferentials, Directional Derivatives, and Radial Epiderivatives for Nonconvex Functions

In this paper we study relations between the directional derivatives, the weak subdifferentials, and the radial epiderivatives for nonconvex real-valued functions. We generalize the well-known theorem that represents the directional derivative of a convex function as a pointwise maximum of its subgradients for the nonconvex case. Using the notion of the weak subgradient, we establish conditions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Set-Valued and Variational Analysis

سال: 2018

ISSN: 1877-0533,1877-0541

DOI: 10.1007/s11228-018-0492-5